Search results

Search for "shape anisotropy" in Full Text gives 30 result(s) in Beilstein Journal of Nanotechnology.

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • that there are some fluctuations in the high-frequency range (10–16 GHz), which are called Debye relaxation peaks. These peaks are caused by shape anisotropy or surface polarization. For the SCZ samples, the unique core–shell structure and the interface polarization effect between different phases may
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • developed in order to increase the reliability of the correlations between morphology and magnetism. Using the Magn3t software, the magnetic shape anisotropy magnitude and direction of magnetite nanoparticles has been extracted for the first time directly from transmission electron tomography. Keywords
  • : electron tomography; magnetite; Python; shape anisotropy; Introduction For any nanoparticle (NP) system, among the most important pieces of physical information for scientists is information related to the morphology (size, shape, and organization) of its constituents. In nanoscale systems, this
  • addressing strongly desired morphology–magnetism correlations analyzing the shape anisotropy with respect to its magnitude, direction, and statistical distribution of MNPs within the system, starting from tomograms experimentally obtained on real MNP systems. The aspects addressed by the proposed software
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Heating ability of elongated magnetic nanoparticles

  • Elizaveta M. Gubanova,
  • Nikolai A. Usov and
  • Vladimir A. Oleinikov

Beilstein J. Nanotechnol. 2021, 12, 1404–1412, doi:10.3762/bjnano.12.104

Graphical Abstract
  • nanoparticles are arbitrarily directed with respect to the particle easy anisotropy axes (see below the inset in Figure 1a). Then, the shape anisotropy energy of the assembly of spheroidal nanoparticles can be written as follows: where KSh is the shape anisotropy constant and is the unit vector along the
  • direction of elongation of the i-th nanoparticle. The shape anisotropy constant is given by [48]: Here Ms = 450 emu/cm3 is the saturation magnetization of a magnetite nanoparticle [47] and Na is the demagnetizing factor along the long nanoparticle axis. In this work, we also consider the effect of MD
  • nanoparticles is straightforward. For magnetite nanoparticles with a high saturation magnetization, the shape anisotropy energy of the particle rapidly increases with increasing aspect ratio. For example, for magnetite a nanoparticle with aspect ratio a/b = 1.25 the shape anisotropy constant is KSh = 1.09 × 105
PDF
Album
Full Research Paper
Published 28 Dec 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • contributes to a large coercivity. The second factor is the large aspect ratio of the Fe-filled arrays characterized by a large shape anisotropy, which may lead to high coercivity. The saturation magnetization of MnFe2O4/MWCNTs at room temperature is 7.6 emu/g, six times lower than the expected saturation
  • due to the existence of a diamagnetic component in CNTs. In the literature, the reported value for MnFe2O4 nanoparticles of 12.5 nm in size is 55 emu/g [27]. From the above analysis it can be concluded that particle size has a major effect on the blocking temperature value. Shape, anisotropy, and
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • electrodes (Figure 5b). The observed variation in the R(T) step-like behavior may also be due to the specific sample geometry (i.e., electrodes with horizontal and vertical orientations, Figure 4a). Due to the shape anisotropy, the “body” of the “centipede” is magnetized along the longitudinal direction
PDF
Album
Full Research Paper
Published 07 Sep 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • optical properties not only in the visible but also in the near-infrared spectral range. Shape anisotropy (rods) and regiospecific surface functionalization (tip versus lateral parts) enable the fabrication of colloidal systems with limited degrees of freedom. In such systems, the possible orientations of
PDF
Album
Review
Published 31 Jan 2020

Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering

  • Hamidreza Hajihoseini,
  • Movaffaq Kateb,
  • Snorri Þorgeir Ingvarsson and
  • Jon Tomas Gudmundsson

Beilstein J. Nanotechnol. 2019, 10, 1914–1921, doi:10.3762/bjnano.10.186

Graphical Abstract
  • incidence on the structural and magnetic properties of Ni thin films deposited using dcMS and HiPIMS. We chose to work with pure Ni rather than NiFe alloys because it rejects many proposed explanations for uniaxial anisotropy based on alloying, i.e., directional ordering of Fe/Ni atom pairs [46], shape
  • anisotropy of an elongated ordered phase [47], composition variation between grains [48] and, more recently suggested, localized composition non-uniformity [49]. Besides, we do not rotate the substrate during the deposition to simplify the conditions at the cost of losing film thickness uniformity
PDF
Album
Full Research Paper
Published 20 Sep 2019

On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia

  • Andrei Kuncser,
  • Nicusor Iacob and
  • Victor E. Kuncser

Beilstein J. Nanotechnol. 2019, 10, 1280–1289, doi:10.3762/bjnano.10.127

Graphical Abstract
  • anisotropy (as due to only the shape anisotropy), defined along Ox axis (along the MNP length), it is possible to calculate both the magnitude of the anisotropy energy barrier of each particle (e.g., as in Figure 3a,b) or the anisotropy energy of the whole system (e.g., as in Figure 3c) for all the assumed
PDF
Album
Full Research Paper
Published 24 Jun 2019

Magnetic field-assisted assembly of iron oxide mesocrystals: a matter of nanoparticle shape and magnetic anisotropy

  • Julian J. Brunner,
  • Marina Krumova,
  • Helmut Cölfen and
  • Elena V. Sturm (née Rosseeva)

Beilstein J. Nanotechnol. 2019, 10, 894–900, doi:10.3762/bjnano.10.90

Graphical Abstract
  • orientation of some nanoparticles within the superlattice with <112>magnetite perpendicular to the substrate might be caused by the simultaneous competition of two types of anisotropic interactions between nanoparticles during the assembly process [24]. On one side the particle shape anisotropy promotes face
PDF
Album
Letter
Published 17 Apr 2019

Heating ability of magnetic nanoparticles with cubic and combined anisotropy

  • Nikolai A. Usov,
  • Mikhail S. Nesmeyanov,
  • Elizaveta M. Gubanova and
  • Natalia B. Epshtein

Beilstein J. Nanotechnol. 2019, 10, 305–314, doi:10.3762/bjnano.10.29

Graphical Abstract
  • deviation from the nanoparticle shape in a first approximation can be described as small particle elongation in a direction random with respect to the direction of the cubic easy anisotropy axes. For a slightly elongated nanoparticle of a soft magnetic type, the shape anisotropy energy may have an
  • small interval 1 < a/b < ξmax. For elongated nanoparticles, in addition to the magneto-crystalline anisotropy energy, Equation 3, there is also a shape anisotropy energy contribution where Ki is the shape anisotropy constant and ni is the unit vector along the direction of elongation of the ith
  • nanoparticle. For the shape anisotropy constant one obtains [32] Here Na is the demagnetizing factor along the long nanoparticle axis. Next, the Zeeman energy of the cluster in an applied alternating magnetic field is given by For nearly spherical, uniformly magnetized nanoparticles the magnetostatic energy
PDF
Album
Full Research Paper
Published 29 Jan 2019

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • the NPs, especially significant for the present octahedra, increase the effective magnetic anisotropy by shape anisotropy which increases quadratically with MS [59]. Experimentally, this was observed by Joshi et al. [74] and Smolensky et al. [75] when they compared spherical and faceted NPs. In both
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018

Magnetism and magnetoresistance of single Ni–Cu alloy nanowires

  • Andreea Costas,
  • Camelia Florica,
  • Elena Matei,
  • Maria Eugenia Toimil-Molares,
  • Ionel Stavarache,
  • Andrei Kuncser,
  • Victor Kuncser and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2018, 9, 2345–2355, doi:10.3762/bjnano.9.219

Graphical Abstract
  • systems, the nanowires exhibit an additional degree of freedom associated to their inherent shape anisotropy, depending on the aspect ratio (the ratio between the length of the wire and its diameter). Both the aspect ratio and the wire diameter influence the magnetic domain structure of the wire, which is
  • the shape anisotropy). It is worth mentioning that Δρ might be positive or negative depending on whether the electron conduction is dominant by spin-up or spin-down electron scattering as well as by the ratio between the spin–orbit coupling parameter and the splitting of the uppermost bands of the
  • the wire axis (EA) at zero field (after saturation) due to the shape anisotropy, MRmax in parallel geometry has to be 0 (as experimentally confirmed) whereas in perpendicular geometry . The dependence of the perpendicular magnetoresistance on the applied field in three nanowires SNW1, SNW2 and SNW3 is
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

Magnetic characterization of cobalt nanowires and square nanorings fabricated by focused electron beam induced deposition

  • Federico Venturi,
  • Gian Carlo Gazzadi,
  • Amir H. Tavabi,
  • Alberto Rota,
  • Rafal E. Dunin-Borkowski and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2018, 9, 1040–1049, doi:10.3762/bjnano.9.97

Graphical Abstract
  • noted that Co carbonyl precursor was chosen here because it has been shown to provide high purity deposits with magnetic properties that are close to those of pure Co [13]. It is well known that shape anisotropy has a profound influence on the magnetic properties of nanostructured materials. The NW is a
  • basic building block of magnetic nanodevices, as its high aspect ratio (length/width) often results in a single magnetic domain state due to shape anisotropy [14]. In detail, a NW has a stable magnetic state if its width is smaller than 7·Δd, where Δd is the dipolar exchange length [15], which is ca
  • monodomain states, with their magnetization aligned along their long axes due to shape anisotropy [13]. Impurities are present on some samples (especially for the 20 s and 40 s depositions at 5 keV), resulting in flux-closure domain states, which deform the dipole-like phase structure locally. These
PDF
Album
Full Research Paper
Published 03 Apr 2018

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • (monomers) in presence of quaternary ammonium salts. Hydroxide ions and a magnetic moment of the monomers are essential to induce shape anisotropy in the nanostructures. The cobalt nanoplates are studied in detail, and a growth mechanism based on collision, aggregation, and crystal consolidation is proposed
  • of a nanoplate. The study explains, hereto unaddressed, the temporal evolution of complex magnetic nanostructures. These ferromagnetic nanostructures represent an interesting combination of shape anisotropy and magnetic characteristics. Keywords: Brownian motion; cobalt nanoplates; electron
  • examined in detail. This observation is in agreement with previous studies that suggest that shape anisotropy is observed only above a certain concentration of hydroxide ions [23][24][29]. EDS measurements of well-formed nanoplates showing the presence of cobalt is are given in Figure S4 (Supporting
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

Properties of Ni and Ni–Fe nanowires electrochemically deposited into a porous alumina template

  • Alla I. Vorobjova,
  • Dmitry L. Shimanovich,
  • Kazimir I. Yanushkevich,
  • Sergej L. Prischepa and
  • Elena A. Outkina

Beilstein J. Nanotechnol. 2016, 7, 1709–1717, doi:10.3762/bjnano.7.163

Graphical Abstract
  • ; Introduction Arrays of vertically arranged metallic NWs have attracted a lot of attention due to their shape anisotropy and extremely large surface area. The combination of this unique structure with uncommon magnetic, optical and transport properties can be used to develop novel functional nanomaterials for
PDF
Album
Full Research Paper
Published 14 Nov 2016

Customized MFM probes with high lateral resolution

  • Óscar Iglesias-Freire,
  • Miriam Jaafar,
  • Eider Berganza and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2016, 7, 1068–1074, doi:10.3762/bjnano.7.100

Graphical Abstract
  • influence of the dominating shape anisotropy (as deduced from the cross-tie domain walls [22] seen in Figure 1c), in agreement with the macroscopic hysteresis loops measured at room temperature by VSM (Figure 1d). A high remanent magnetization of 82% of the saturation value is found when an IP field is
  • applied. This, together with the shape anisotropy induced by the pyramidal tip, forces the magnetic moments to remain mainly oriented along the pyramid surface. Nevertheless, the orientation of the spins at the apex will depend on the apex shape and on the way the cobalt layer covers it. Results and
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2016

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • spherical masks for the production of magnetic antidot lattices. In magnetic antidot films, the nanoscale periodic structure of holes introduces an in-plane shape anisotropy to the otherwise isotropic in-plane properties of polycrystalline or amorphous thin films. Additionally, the holes may act as
  • magnetic properties of in-plane magnetized antidot films. Integral magnetometry averaging over all in-plane angles of the antidots with respect to the external field proves that the system is highly dominated by the local shape anisotropy introduced by the hole sites. We identify two distinct switching
  • interactions. In our simulations, the elongated sample size (2 × 8 µm2) results in anisotropy along the long axis while we do not observe any shape anisotropy of the channel at an aspect ratio of 8 in our experiment. To account for this discrepancy we have modified our simulations by applying an additional
PDF
Album
Full Research Paper
Published 24 May 2016

Focused particle beam-induced processing

  • Michael Huth and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1883–1885, doi:10.3762/bjnano.6.191

Graphical Abstract
  • article by Gian Carlo Gazzadi and Stefano Frabboni [6]. This leads into the important application field of magnetic nanostructures obtained by FEBID. Luis Rodríguez and coworkers present a detailed study on the influence of shape anisotropy and surface oxidation on the magnetization reversal of thin, iron
PDF
Editorial
Published 09 Sep 2015

Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction

  • Marcin Krajewski,
  • Wei Syuan Lin,
  • Hong Ming Lin,
  • Katarzyna Brzozka,
  • Sabina Lewinska,
  • Natalia Nedelko,
  • Anna Slawska-Waniewska,
  • Jolanta Borysiuk and
  • Dariusz Wasik

Beilstein J. Nanotechnol. 2015, 6, 1652–1660, doi:10.3762/bjnano.6.167

Graphical Abstract
  • identical, this observation is surprising at the first moment. In general, the effective anisotropy of the nanowires should be much higher due to the high uniaxial shape anisotropy, which is increased by the magnetocrystalline anisotropy with the easy axis oriented along the wire length caused by the
  • between them. These interactions result in the strong uniaxial shape anisotropy with the easy axis of magnetization parallel to the length of the wires. This stabilizes the magnetization distributions and causes that the squareness ratio (MR/Ms) is higher in the studied nanowires. Besides that, the
PDF
Album
Full Research Paper
Published 29 Jul 2015

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

  • Luis A. Rodríguez,
  • Lorenz Deen,
  • Rosa Córdoba,
  • César Magén,
  • Etienne Snoeck,
  • Bert Koopmans and
  • José M. De Teresa

Beilstein J. Nanotechnol. 2015, 6, 1319–1331, doi:10.3762/bjnano.6.136

Graphical Abstract
  • producing the magnetization reversal. Most of magnetic devices work by producing a voltage output when the magnetization reversal occurs. In the case of cobalt deposits, it was previously found that the coercive field is governed by shape anisotropy [24] due to the polycrystalline microstructure [25], and
  • valve in the GIS and had to be optimized in order to obtain deposits exhibiting ferromagnetic properties with suitable shape anisotropy. In these experiments, the nominal turbopump speed is 260 L/s for nitrogen gas. When the leak valve is opened, the chamber pressure increases. The chamber pressure is
  • decreased to the range from 3 × 10−6 to 4 × 10−6 mbar, the deposits did not show the granular structure and the magnetization reversal was found to be dominated by shape anisotropy (see next section). In situ compositional analysis by energy dispersive X-ray spectroscopy (EDS) indicated that the Fe content
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015

Tunable magnetism on the lateral mesoscale by post-processing of Co/Pt heterostructures

  • Oleksandr V. Dobrovolskiy,
  • Maksym Kompaniiets,
  • Roland Sachser,
  • Fabrizio Porrati,
  • Christian Gspan,
  • Harald Plank and
  • Michael Huth

Beilstein J. Nanotechnol. 2015, 6, 1082–1090, doi:10.3762/bjnano.6.109

Graphical Abstract
  • the sample plane and, hence, the out-of-plane magnetization was probed by the measurements. This means that first the shape anisotropy of the stripe had to be overcome and all recorded loops relate to the hard-axis magnetization behavior. The reference Co-based sample A shows no hysteresis, whereby U
  • carbon. Thus, in the course of the reaction, carbon is partially removed from the deposit causing a reduction of the deposit thickness. The magnetic behavior of the thin polycrystalline Co stripe A is dominated not by the magnetocrystalline anisotropy, but rather by the shape anisotropy causing the
PDF
Album
Full Research Paper
Published 29 Apr 2015

Cathode lens spectromicroscopy: methodology and applications

  • T. O. Menteş,
  • G. Zamborlini,
  • A. Sala and
  • A. Locatelli

Beilstein J. Nanotechnol. 2014, 5, 1873–1886, doi:10.3762/bjnano.5.198

Graphical Abstract
  • map in Figure 10b (right panel). This is a surprising confirmation of the magnetocrystalline anisotropy strength dominating the shape anisotropy. Iron oxides find wide application in several fields of research, among others magnetism and heterogeneous catalysis. In both cases, the heteroepitaxial
PDF
Album
Review
Published 27 Oct 2014

Designing magnetic superlattices that are composed of single domain nanomagnets

  • Derek M. Forrester,
  • Feodor V. Kusmartsev and
  • Endre Kovács

Beilstein J. Nanotechnol. 2014, 5, 956–963, doi:10.3762/bjnano.5.109

Graphical Abstract
  • anisotropies [1]. A nanomagnet with high shape anisotropy must have some kind of modulation in order to reduce the height of the anisotropy energy barrier. This is typically done through doping in order to reduce the saturation magnetization of the nanomagnet. In recent years amorphous ferromagnetic materials
  • system to locate the metastable states that exist in the energy landscape. The size of the shape anisotropy energy barrier is a function of the saturation magnetization, the geometry of the nanomagnet and its demagnetization factors. These demagnetization factors, Nx,y,z, are defined by length scales
  • particle there may be induced higher multipoles which add additional contributions into the overall interaction. Thus, the resulting interaction between the particles depends on the relative interaction between them, so that the shape anisotropy will play a key role. Recently, Serantes et al. [10] produced
PDF
Album
Full Research Paper
Published 03 Jul 2014

Spin relaxation in antiferromagnetic Fe–Fe dimers slowed down by anisotropic DyIII ions

  • Valeriu Mereacre,
  • Frederik Klöwer,
  • Yanhua Lan,
  • Rodolphe Clérac,
  • Juliusz A. Wolny,
  • Volker Schünemann,
  • Christopher E. Anson and
  • Annie K. Powell

Beilstein J. Nanotechnol. 2013, 4, 807–814, doi:10.3762/bjnano.4.92

Graphical Abstract
  • experimentally. By using Mössbauer spectroscopy we have shown how minor changes in the electronegativity of the atoms in the ligand sphere and in the donor–acceptor nature of the substituents, and their position on the aromatic ring, can control the shape anisotropy of the DyIII ions and, thus, their interaction
  • polarization, and thus the shape anisotropy of the DyIII ion and its interaction with the iron centres can be controlled. This means that the Ln anisotropy can be influenced not only by altering crystal field, but also by an external source. But, surprisingly, this is not always the case. It seems that the
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2013

Highly ordered ultralong magnetic nanowires wrapped in stacked graphene layers

  • Abdel-Aziz El Mel,
  • Jean-Luc Duvail,
  • Eric Gautron,
  • Wei Xu,
  • Chang-Hwan Choi,
  • Benoit Angleraud,
  • Agnès Granier and
  • Pierre-Yves Tessier

Beilstein J. Nanotechnol. 2012, 3, 846–851, doi:10.3762/bjnano.3.95

Graphical Abstract
  • observed uniaxial magnetic anisotropy field oriented along the nanowire axis is an indication that the shape anisotropy dominates the dipolar coupling between the wires. We further show that the thermal treatment induces a decrease in the coercivity of the nanowire arrays. This reflects an enhancement of
  • from the shape anisotropy resulting from the very high aspect ratio of these nanostructures [7][35][36][37][38][39][40][41][42][43]. Concerning the coercive field, it is slightly higher ( = 32 Oe) when the external magnetic field is applied parallel to the nanowire array, than the one measured for the
  • further demonstrated the presence of a preferential magnetic orientation along the wire axis, which has been attributed to the shape anisotropy. The low coercive fields reflect the low roughness and low structural defects as well as dipolar coupling between the nanowires. This new type of graphene
PDF
Album
Supp Info
Letter
Published 11 Dec 2012
Other Beilstein-Institut Open Science Activities